

WW]]!

4th International Conference on Industrial Engineering and Industrial Management
XIV Congreso de Ingeniería de Organización
Donostia- San Sebastián , September 8th -10th 2010

Using real world distances in logistics management

Kostanca K atragjini1, Rubén Ruiz1, A le jandro Rodríguez2

1 Grupo de Sistemas de Optimización Aplicada, Instituto Tecnológico de Informática, Universidad Politécnica de
Valencia, Edificio 7A, Camino de Vera S/N, 46021 Valencia, España.kostanca@iti.es, rruiz@eio.upv.es
2 Grupo de Sistemas de Optimización Aplicada, Instituto Tecnológico de Informática, Universidad Politécnica
de Valencia, Pza. Ferrándiz Carbonell, 2 03801 Alcoy, España. arodriguez@doe.upv.es

Abstract

Logistics deals with the planning and control of material flows and related information in organizations, both in
the public and private sectors. Modeling and solving logistic problems often requires a considerable amount of
data and the quality of the gathered data may influence algorithms results. In this study we address the issue of
gathering automatically, from geographic information systems (GIS), real world distances between nodes in a
logistic network. We will show how the efficiency is of paramount importance when retrieving large amounts of
logistic data and how our proposed architecture makes possible real data retrieving in reasonable times

K eywords: logistics, VRP, GIS, real travel distances

1. Logistics Management

A logistics system is made up of a set of nodes (facilities) connected by transportation
services and by a transportation network. Nodes are locations where materials are processed,
i.e., manufactured, stored, sold or consumed. Transportation services move materials between
facilities using vehicles and equipment such as trucks, tractors, trailers, crews, pallets,
containers, cars, trains, etc. The design of a logistic system typically deals with the best
configuration, size and location of facilities. It also deals with transportation system design
and optimization such as fixing the mode of transportation to use the best fleet size, schedule
shipments, optimize vehicle routes, etc. (Ghiani, Laporte, Musmanno 2004). Modeling and
solving logistic problems often requires a considerable amount of data and the quality of the
gathered data may influence the quality of the results given by algorithms. Finding, verifying
and tabulating logistic information and data is a difficult and time consuming task and
requires a big effort and accuracy in order to guarantee correct optimization results. In this
study we address the issue of gathering automatically, from geographic information systems
(GIS), real world distances between nodes in a logistic network. We will show how the
efficiency is of paramount importance when retrieving large amounts of logistic data and how
our proposed architecture makes possible real data retrieving in reasonable times. Our final
intention with this research is to stir the research filed in logistic optimization and to move it
away from the well known and common assumption that distances between nodes are
assumed to be Euclidean.

2. Travel distances in common logistic problems

We first briefly describe some of the most well known and studied logistic problems in order
to highlight the fact that transportation distances between nodes need to be known before
solving their mathematical formulation or before applying any other optimization method.

WW]_!

New facility location problems deal with the determination of the optimal new facility
location in a network configuration, so that the total transportation cost is kept to minimum.
In p-centre models the aim is to locate p facilities on a transportation network in such a way
that the maximum travel time from a user to the closest facility is minimized. In location-
covering models the aim is to determine the least-cost set of facilities such that each user can
be reached within a given maximum travel time from the closest facility. Freight traffic
assignment problems (TAPs) consist of determining a least-cost routing of goods over a
network of transportation services from their origins (e.g. manufacturing plants) to their
destinations (e.g. retail outlets) and are modeled as a minimum cost flow problem. (Complete
descriptions in Ghiani, Laporte and Musmanno, 2004) Vehicle routing problems are central to
distribution management and logistics and typically must be solved routinely by carriers.
They involve finding efficient routes for vehicles along transportation networks, in order to
minimize route length, service cost, travel time, number of vehicles, etc. In practice, several
variants of the problem exist because of the diversity of operating rules and constraints
encountered in real-life applications. (Laporte, 2007)

All these problems are usually modeled on a directed, undirected or mixed graph G(V, A, E)
with V being the set of vertices, representing terminals, plants, warehouses, demand points,
road intersections etc. A and E denote the sets of arcs and edges, respectively and model
transportation links, road connections, material flows, etc. Arc and edges are associated with
transportation costs that typically depend on travel distances between vertices, travel times,
quantity of moved material or any other measure or performance indicator.

3. Using G eographic Information Systems (G IS) for real t ravel distances data retr ieval

The number of nodes (facilities) in a transportation network can exceed several thousands
depending on company dimension and transportation sector. Urban waste collection, food
distribution, parcel shipment and delivery, etc. are examples of applications where the
transportation network can reach tens of thousands of nodes. In order to keep algorithms
computation times and hardware requirements acceptable, several techniques of data
gathering and clustering can be found in literature. With regard to travel distances between
nodes in transportation networks the typical simplification that can be found in literature is the
use of the Euclidian distance metric or the spherical geometry. The Euclidean metric is the
distance between two points in the plane that one would measure with a ruler, and is given by
the Pythagorean formula. The spherical geometry deals with great-circle distances or
orthodromic distances that are shortest distances between any two points on the surface of a
sphere (great circle distance). In general, Euclidean and orthodromic distances are a lower
bound estimation of the real shortest path distances between two locations on Earth. Figure 1
shows the orthodomic distance and a shortest path distance provided by a public GIS,
calculated between two major Spanish cities: Valencia and Barcelona.

WW]U!

F igure 1: Route between Valencia and Barcelona: Left orthodomic distance of 303.365 km., Right shortest path

distance of 349 km.

One could think that orthodromic distances are acceptable. However, we have previously
demonstrated (Rodríguez and Ruiz 2009) that there is a tremendous effect in solution quality
between using real distances and orthodromic approximations.

Real world distances and travel times actually depend on the physical transportation
infrastructure that connects each couple of nodes in a logistic network. Geographic
Information Systems (GIS) can provide real distance information derived from digital road
networks in order to accurately estimate distances between each couple of nodes in a logistic
network. Originally, when GIS data was mostly based on large computers and stored in
internal records, GIS software was basically a stand-alone product. With the increased access
to the Internet, demand for distributed geographic data grew and GIS software gradually
changed its entire outlook to the delivery of data over a network. Public access to geographic
information is nowadays provided by online resources such as Google Earth and Microsoft
Bing, among others. Users can easily include their APIs in custom applications using web
service requests or http requests and the Internet.

3.1. Obtaining large real-world distance matrices with threaded algorithms

With the arrival of web-based GIS it is possible to include in user applications the logic for
calculating real distances between locations (latitude, longitude) and to automatically obtain
large real distance matrixes for all types of logistics optimizations. This logic basically
consists of executing minimum path requests to a web-based GIS. A path request typically
contains the geographical coordinates of from-to locations, the desired type of minimum path
(fastest or shortest) and an indication on the travel method (walking, by car, etc.). Minimum
path calculations are executed in GIS servers and minimum path algorithms, such as

 are used. In this study, first we address the problem of optimizing the
process of the automatic collection of shortest paths from a web-based GIS, minimizing GIS
response waiting times. For a transportation network with 1000 nodes, 999,000 paths should
be calculated, one for each couple of nodes (1000"999). Several days could be necessary to
complete the process if the 999,000 path requests are run sequentially. A very effective way
to accelerate the process of obtaining big distance matrixes from GIS remote servers is the
utilization of multithreading techniques in user application logics. With multithreading, the
total GIS response waiting times are minimized because new requests can be started during
the waiting times of already started requests. The idea is to start as many new requests as
possible, each one in a separate thread, during GIS response waiting times, in order to have a
pipeline-like execution process. Let us consider the situation of a pool of similar requests to
run, each one having the same TWaiting GIS Response times. If n is the number of requests that can

WW][!

be started in this time window, total waiting time of the n requests is 2·TWaiting GIS Response, as
shown in Figure 2:

F igure 2: Example of a total response waiting time for n GIS requests started in interval TWaiting GIS Response.

If requests are executed sequentially, total waiting time should be n·TWaiting GIS Response. The
acceleration in the total waiting time is:

Acceleration = n· TWaiting GIS Response -2 ·TWaiting GIS Response = (n-2) ·TWaiting GIS Response

The above theoretical result shows that the maximum acceleration that we can give to the
total GIS response waiting times depends only on TWaiting GIS Response and n, number of requests
that can be started in this time window. Note also that in modern multi-core computers,
nothing precludes us from launching more than one initial request to the web-based GIS and
therefore the schema shown in Figure 2 can be replicated a number of times and the
acceleration factor can be increased accordingly.

For big instances with thousands of requests to calculate, the differences in response waiting
times between different web-based GIS that depend on the efficiency of shortest path
algorithms and GIS server optimizations can be dampened by the above mechanism of
accelerations. Our experiments confirmed the existence of an upper bound limit of the
possible acceleration that can be given to the calculation process. In real life distance
calculations, GIS waiting times are variable and depend on request complexity given from the
distances between the two points, origin and destination of the path. The number of requests
that can be started during GIS responses waiting times is variable and the calculation of the
best number of threads to run simultaneously can only be done on a statistical basis.

In order to fix the maximum number of threads to use we executed full distance matrix
calculations for different sizes n of transportation networks where n is the number of nodes
and different number of threads as shown in Figure 3.

WW_V!

F igure 3: Calculation time vs. number of threads when calculating distance matrixes

The experiments were run in a single-core CPU 2.5 GHz virtual machine with 2 GB of RAM
and the code was written in C# 3.0 under the .NET platform 3.5.

The best results correspond to a number of threads equal to 10. For greater number of threads,
calculations times can be worse because of inefficiencies caused by having many threads
running in the same single-core CPU. Recall that all threads compete for the same processor
and context-change and other cache-related inefficiencies quickly degrade computing
resources.

3.2. An effective algorithm for calculating real distances from a web-based G IS

The acceleration of real distance calculation process can be greatly improved if the web-based
GIS minimum path requests are built in an intelligent way. Public GIS like Google Maps and
Microsoft Bing allow for multi-point minimum path requests to be executed. It is possible to
request for a path calculation that passes through a certain number of fixed locations i.e..
going from location A to location B passing by locations C, D, E, etc. GIS return minimum
distances and travel times for each of the ways that compose the whole path, AC, CD,

n nodes, the shortest path matrix, with all paths between
each couple of nodes, has n·(n-1) elements. Theoretically, n·(n-1) minimum path requests
should be launched to a remote web-based GIS. We have created an algorithm that constructs
a unique multipoint sequence that contains all the n· (n-1) paths as intermediate paths and
does not repeat any path.

All the n nodes are numbered from 1 to n n-1, n. The
objective is to establish a criterion for visiting all the n nodes. We first iteratively build a
starting sequence of numbers called S1n in the following manner.

Step 1: visited node = 1; S1n = {1}

Step 2: Next visited node = 2; S1n = {1, 2}

At each step, we try to include in the sequence already visited nodes in order to obtain the
return ways. The candidate at this step for the next node to visit is node 1. The algorithm
consists in accepting only nodes whose distance from the last visited n

WW_W!

distance is calculated as the difference between node numbers. If a backward node is
accepted, its number and the number of the last visited node are added to the sequence.

Following the example, at this step, 2-1 < 2, so node 1 is not accepted in the sequence and
Step 2 finishes.

Step 3: Next visited node = 3; S1n = {1, 2, 3}

 Look for backward elements:

 3- n = {1, 2, 3, 1, 3}

 3-2 < 2, step 3 finishes.

Step 4: next visited node = 4; S1n = {1, 2, 3, 1, 3, 4}

 Look for backward elements:

 4- n = {1, 2, 3, 1, 3, 4, 1, 4}

 4- n = {1, 2, 3, 1, 3, 4, 1, 4, 2, 4}, step 4
finishes.

Step n, Next visited node = n; S1n = {1, 2, 3, 1, 3, 4, 1, 4, 2, 4, 5, 1, 5, 2, 5, 3, 5, , n}

 Look for backward elements:

 n- so add to sequence node n and 1, therefore S1n = { 1, 2, 3, 1, 3, 4, 1, 4, 2, 4, 5, 1, 5,
2, 5, 3, 5, , n, 1, n}

n- 2 so add to sequence node n and 2, therefore S1n ={ 1, 2, 3, 1, 3, 4, 1, 4, 2, 4, 5, 1, 5, 2,
5, 3, 5, ,n, 1, n, 2, n}

n-(n-2) 2 so add to sequence node n and node (n-2) therefore final S1n is

{1, 2, 3, 1, 3, 4, 1, 4, 2, 4, 5, 1, 5, 2, 5, 3, 5, ,n, 1, n, 2, n n-2, n} and step n finishes.

At this point we build a sequence S2n that contains all the return ways among nodes that have
distance 1 and were not accepted in sequence 1.

S2n = n, n-1, n-

The final sequence Sn is given by

Sn = S1n \ {n} S2n (1)

Sn = {1, 2, 3, 1, 3, 4, 1, 4, 2, 4, 5, 1, 5, 2, 5, 3, 5, , n, 1, n, 2, n n-2, n, n-1, n-

Let us add a new node to the problem, node n+1:

S1n+1 is then {1, 2, 3, 1,3, 4, 1, 4, 2, 4, 5, 1 n, 1, n, 2, n n-2,n, n+1, 1, n+1,

2, n+1, 3, n n-1 ,n+1 } = S1n { n+1, 1, n+1, 2, n+1, 3, n n-1,n+1}

WW_\!

S2n+1 = n+1, n, n-1, n- n+1} S2n

Generalizing:

S1k+1 = S1k {k+1, 1, k+1, 2, k+1, 3, , k+1, k-1, k+1} (2)

Observe that the last element is always n+1 and the distance between each node k+1 and the
next node in sequence is 2.(Example: S15 = S14 {5, 1, 5, 2, 5, 3, 5} = {1, 2, 3, 1, 3, 4, 1, 4,
2, 4} {5, 1, 5, 2, 5, 3, 5}).

S2k+1 = {k+1} S2k (3)

Sk+1 = S1k+1 \ {k+1} S2k+1 as stated in (1), therefore replacing (2) and (3) we have that:

 Sk+1 = S1k {k+1, 1, k+1, 2, k+1, 3, k+1, k-1, k+1}1 S2k (4)

Given n nodes, the sequence can be created in n iterations, iterating k from 1 to n with initial
condition S11 = 1 and S21=1.

An example with 10 nodes numbered from 1 to 10:

1,2,3,1,3,4,1,4,2,4,5,1,5,2,5,3,5,6,1,6,2,6,3,6,4,6,7,1,7,2,7,3,7,4,7,5,7,8,1,8,2,8,3,8,4,8,5,8,6,8,
9,1,9,2,9,3,9,4,9,5,9,6,9,7,9,10,1,10,2,10,3,10,4,10,5,10,6,10,7,10,8,10,9,8,7,6,5,4,3,2,1.

Moreover, if we have calculated previously all the distances for n nodes and at a certain point
we add to the tran
calculate the optimized unique sequence that contains only the new ways added to the
problem. For doing this we only need to numerate all nodes whose full distance matrix was
already calculated from 1 to n and the new ones form n+1 to n

sequence S(n the sequence Sn.

From a web-based GIS point of view, the sequence is interpreted like a multi stop path
request that starts in the first node of the sequence, finishes in the last node of the sequence,
and passes by intermediate nodes in the same order as in the request. Web-based GIS have
practical limits in the maximum number of intermediate stops so it could be necessary to cut
the unique request into a set of smaller requests of maximum k nodes in each request, if k is
the practical limit. In the following example it is shown how to cut the sequence if the
practical limit is of 12 nodes.

The whole sequence it is decomposed in 9 multi path requests.

All requests contain 12 nodes, which is equivalent to 11 intermediate paths, except for the last
one that contains the remaining 3 nodes (2 intermediate paths). Request 1 is a multi path
request that starts in node 1, finishes in node 1 and passes by the intermediate nodes delimited
by the red rectangle. Request 2 starts in node 1, ends in node 3 and passes by the intermediate

WW_X!

nodes delimited by the green rectangle. Observe that it is necessary to start in node 1, the last
of the previous request, and not in node 5, in order to not loose the intermediate path 1-5 of
the original sequence. The same can be said for the other requests. Given a node network of n
nodes, and a practical limit of maximum k nodes in each multi path request, let us calculate
the number N of total requests that will be created by splitting the first unique multipoint
sequence, that contains all the n·(n-1) minimum cost paths. The first N-1 requests contain
each one of the k nodes and (k-1) intermediate minimum cost paths like it is shown in the
following example:

Observe that the last request N k-1.

1
)1()1()1(

k
nnNnnkN

k-1:

1
1

10

1
1

0:,10;
1

1
1

)1()1()1)(1(

k

k
thereforek

kk
nnNnnkN

1
1

)1(
1

)1(1
1

)1(
1

)1(
1

)1(
1

)1(
k
nnN

k
nn

k
nn

k
nn

k
nn

k
nnN

N is an integer number thus: 1
1

)1(
k
nnN

In such a way we pass from the initial)1(nn simple path GIS requests, to

1
1

)1(
k
nnN

multi-point minimum path requests. Each of these requests can then be

executed in a separate thread in order to benefit from the multithreading accelerations as
described in the previous sections. The result is a drastic reduction of the duration of the
process of real distance calculations. In our experiments we calculated real distances for
different problem sizes n where n {40, 80,120,160,..., 1040} as it is shown in Table 1.
Microsoft Bing Route Web Service was used for obtaining real shortest path distances.

For each problem size we measured the calculation times running the)1(nn requests

sequentially and in multithreading (10 threads), and the optimized 1
1

)1(
k
nnN

requests, for k = 24, run in multithreading (10 threads). Microsoft Bing Route Web Service
exposes an API for developers that permit to easily create and run shortest path request to
Microsoft servers calling a remote web service. In Table 1 are reported the execution times in
hours and in minutes for each problem size and method of distance matrix calculation.

WW_=!

Table 1: Execution times in hours and in minutes for each problem size n and method for distance matrix
calculation.

The following figure shows the results depicted in a chart.

F igure 4: Calculation time vs. size of the transportation matrix n and method for calculating the distance

matrixes.

WW_`!

For large problem instances like n=1000 nodes execution time passes from 6 days and 6 hours
approximately to 1 day and 4 hours.

In the following figure, time savings in hours obtained with multithreading and
multithreading plus multipoint requests are depicted in a chart.

F igure 5: Calculation time vs. size of the transportation matrix n and method for calculating the distance

matrixes. Multi-threading with and without multipoint requests.

Time savings show to be 63% when multithreading technique is used to calculate full distance
matrix and 80% when the multithreading technique is combined with optimized multi point
requests.

4. Conclusions

Calculating real distances instead of orthodromic simplifications is a must when dealing with
complex logistic management problems. Nowadays, it is perfectly possible to do so by using
publicly available web-based GIS systems capable of calculating real distances between
nodes in a transportation network efficiently. However, in real logistic problems, with
possibly thousands of nodes, the matrixes containing real distances (and/or times) between
nodes are challenging to calculate. Actually, the time needed to obtain such matrixes can
easily be orders of magnitude bigger than the time needed for solving complex logistic
management problems with elaborated metaheuristics. For some reason, the scientific
literature has neglected this important fact. In this work we have shown two techniques,
namely, threading retrieval and intelligent request construction, that, when combined, allow
for drastic improvements in the times needed to calculate such matrixes.

5. Future work

Currently, we are extending our algorithms and implementations to parallel execution in
modern CPUs with more than one single core. We started this research work with a single-
core CPU in order to create a solid base for further optimization. We expect to further reduce
distance matrix execution times, as many times as the number of cores present in the machine.

WW_]!

Acknowledgements

This work is partially funded by the Spanish Ministry of Science and Innovation, under the
- Advanced Parallel Multiobjective Sequencing: Practical and Theoretical

Advances with reference DPI2008-03511/DPI. The authors should also thank the IMPIVA -
Institute for the Small and Medium Valencian Enterprise, for the project OSC with reference
IMIDIC/2009/198 and the Polytechnic University of Valencia, for the project PPAR with
reference 3147.

References

Ghiani, G.; Laporte, G.; Musmanno, R. (2004). Introduction to logistic systems planning and
control. John Wiley & Sons.

Laporte, G. (2007). What you should know about the vehicle routing problem, Naval
Research Logistics, Vol 54, pp. 811-819.

Rodríguez, A.; Ruiz, R. (2009). El impacto de la asimetría en la resolución de problemas de
distribución y rutas. In Spanish. 3rd International Conference on Industrial Engineering and
Management. XIII Congreso de Ingeniería de Organización. Barcelona-Terrassa, 2009, pp.
1645-1654

